Options for Denormal Representation in Logarithmic Arithmetic
نویسندگان
چکیده
Economical hardware often uses a FiXed-point Number System (FXNS), whose constant absolute precision is acceptable for many signal-processing algorithms. The almost-constant relative precision of the more expensive Floating-Point (FP) number system simplifies design, for example, by eliminating worries about FXNS overflow because the range of FP is much larger than FXNS for the same wordsize; however, primitive FP introduces another problem: underflow. The conventional Signed Logarithmic Number System (SLNS) offers similar range and precision as FP with much better performance (in terms of power, speed and area) for multiplication, division, powers and roots. Moderate-precision addition in SLNS uses table lookup with properties similar to FP (including underflow). This paper proposes three variations of a new number system, respectively called the Denormal LNS (DLNS), Denormal Mitchell LNS (DMLNS) and Denormal Offset Mitchell LNS (DOMLNS), which are all hybrids of the properties of FXNS and SLNS. The inspiration for D(OM)LNS comes from the denormal (aka subnormal) numbers found in IEEE-754 (that provide better, gradual underflow) and the μ-law often used for speech encoding; the novel DLNS circuit here allows arithmetic to be performed directly on such encoded data. The proposed approach allows customizing the range in which gradual underflow occurs. A wide gradual underflow range acts like FXNS; a narrow one acts like SLNS. The DLNS approach is most affordable for applications involving addition, subtraction and multiplication by constants, such as the Fast Fourier Transform (FFT). Our first DLNS implementation leverages existing SLNS basic blocks. Synthesis shows the novel circuit primarily consists of traditional SLNS addition and subtraction tables, with additional datapaths that allow the novel ALU to act on conventional SLNS as well as DLNS and mixed data, for a worst-case area overhead of 26%. Unlike SLNS, this DLNS implementation is still costly for general (non-constant) multiplication, division and roots. To overcome this difficulty, this paper proposes the other variations called Denormal Mitchell LNS (DMLNS) and Denormal Offset Mitchell LNS (DOMLNS), in which the wellknown Mitchell’s method makes the cost of general multiplication, division and roots closer to that of SLNS. Taylor-series computations suggest subnormal values in DMLNS and DOMLNS also behave similarly to those in the IEEE-754 FP standard. Synthesis shows that DMLNS and DOMLNS respectively have average area overheads of 25% and 17% compared to an equivalent SLNS 5-operation unit. Key-words: Computer Arithmetic, Logarithmic Number Systems (LNS), underflow, denormal, subnormal Options pour des représentations dénormalisées en arithmétique logarithmique Résumé : Les circuits intégrés économiques utilisent souvent des systèmes de numération en virgule fixe, dont la précision absolue constante est acceptable pour de nombreux algorithmes de traitement du signal. La précision relative quasi-constante du système virgule flottante, plus coûteux, simplifie la conception, en éliminant notamment le risque de débordement par le haut, la dynamique du flottant étant bien plus grande qu’en virgule fixe. Cependant, le flottant primitif induit un autre problème : le débordement par le bas (underflow). Le système logarithmique conventionnel (SLNS) offre une dynamique et une précision similaire au flottant, pour des performances bien meilleures (en termes de consommation, vitesse et surface) pour la multiplication, la division, les puissances et les racines. L’addition en précision moyenne en SLNS est basées sur des accès à des tables, avec des propriétés similaires au flottant (incluant le débordement par le bas). Cet article propose trois variations autour d’un nouveau système de représentation des nombres, respectivement appelées Denormal LNS (DLNS), Denormal Mitchell LNS (DMLNS) et Denormal Offset Mitchell LNS (DOMLNS), qui sont toutes des hybrides des propriétés de la virgule fixe et du SLNS. L’inspiration de D(OM)LNS vient des nombre dénormaux (ou sous-normaux) de la norme IEEE-754, qui fournissent un débordement par le bas graduel, et le codage μ-law utilisé dans la transmission de la voix. Le nouveau circuit DLNS proposé permet de calculer directement sur les données codées. L’approche proposée permet d’ajuster l’intervalle dans lequel le débordement progressif intervient. Une plage large se comporte comme la virgule fixe, une étroite comme le SLNS. L’approche DLNS est la plus économique pour les applications impliquant des additions, soustractions et multiplications par des constantes, telles que les transformées de Fourier rapides (FFT). Notre première mise en œuvre s’appuie sur les blocs de base existant d SLNS. Des synthèses montrent que le nouveau circuit est constitué principalement des tables d’additions SLNS traditionnelles, avec des chemins de données supplémentaires qui permettent à la nouvelle unité d’opérer sur des données SLNS, DLNS ou mixtes, pour un surcoût en surface de 26% dans le pire cas. Contrairement au SLNS, cette réalisation de DLNS reste coûteuse pour la multiplication générique, la division et les racines. Pour surmonter cette difficulté, cet article propose les variations DMLNS et DOMLNS, pour lesquelles la méthode de Mitchell rapproche le coût des multiplications génériques, divisions et racines de leurs équivalents en SLNS. Des calculs sur des séries de Taylor suggèrent que les valeurs sous-normales en DMLNS et DOMLNS se comportent également de manière similaires à celles de la norme IEEE-754. Des synthèses montrent que DMLNS et DOMLNS offrent des surcoûts respectifs de 25% et 17% par rapport à une unité SLNS à 5 opérations équivalente. Mots-clés : Arithmétique, Système logarithmique (LNS), underflow, dénormal, sous-normal 4 Mark G. Arnold, Sylvain Collange
منابع مشابه
Profiling floating point value ranges for reconfigurable implementation
Reconfigurable architectures offer potential for performance enhancement by specializing the implementation of floating-point arithmetic. This paper presents FloatWatch, a dynamic execution profiling tool designed to identify where an application can benefit from reduced precision or reduced range in floating-point computations. FloatWatch operates on x86 binaries, and generates a profile outpu...
متن کاملWelcome to the First HiPEAC Workshop on Reconfigurable Computing
Reconfigurable architectures offer potential for performance enhancement by specializing the implementation of floating-point arithmetic. This paper presents FloatWatch, a dynamic execution profiling tool designed to identify where an application can benefit from reduced precision or reduced range in floating-point computations. FloatWatch operates on x86 binaries, and generates a profile outpu...
متن کاملVariance analysis of control variate technique and applications in Asian option pricing
This paper presents an analytical view of variance reduction by control variate technique for pricing arithmetic Asian options as a financial derivatives. In this paper, the effect of correlation between two random variables is shown. We propose an efficient method for choose suitable control in pricing arithmetic Asian options based on the control variates (CV). The numerical experiment shows ...
متن کاملOptimal Logarithmic Representation in Terms of SNR Behavior
This paper investigates the Signal-to-Noise Ratio (SNR) performance of the Logarithmic Number System (LNS) representation against the SNR performance of the fixed-point representation. Analytic formulas are presented for the evaluation and the comparison of the two aforementioned representations, and the superiority of the LNS representation is demonstrated. It is shown that the base b of the l...
متن کاملAddressing concerns in performance prediction : the impact of data dependencies and denormal arithmetic in scientific codes
To meet the increasing computational requirements of the scientific community, the use of parallel programming has become commonplace, and in recent years distributed applications running on clusters of computers have become the norm. Both parallel and distributed applications face the problem of predictive uncertainty and variations in runtime. Modern scientific applications have varying I/O, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing Systems
دوره 77 شماره
صفحات -
تاریخ انتشار 2014